If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+7x-33=0
a = 6; b = 7; c = -33;
Δ = b2-4ac
Δ = 72-4·6·(-33)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-29}{2*6}=\frac{-36}{12} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+29}{2*6}=\frac{22}{12} =1+5/6 $
| -8q−1=-8q | | 6n^2+7n-33=0 | | 7.83x+39.15=78.3 | | x-5x=3 | | 5z-4+12=-2 | | -8x=4x+18 | | 2/x+5=2 | | -5(x+2)=-5x+1)-x | | -3a-27=-9( | | 2k-7=-15 | | 0=-16t^2+107t+63 | | 4-3x+2x=9 | | 2r=17 | | 3(x-9)=5x-2x=30 | | -15c−-19c−19c=-15 | | (x^2-2x-15)/(x-7)=0 | | -7.6(x-3.75)=22.8 | | 2x^2+x=2x+6 | | 6(x-16)=12 | | 2r=17r | | 9m=-167 | | 24=4x+32/x | | 10b=150 | | -2+2p=4 | | 4n-28÷3=2n | | -7x^2+21=14 | | -4p+5=-7 | | -13x+4x=1+2x | | -2.1x-2+5.9=10.1 | | 9=-4n+1 | | (4n-28)÷3=2n | | 15.5z=- |